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CHAPTER-0 

1 (a) Geometric Notations 

(i) Dimensional real Euclidean space 

(ii) Real line 

(iii) 
i

e   Unit vector in the direction  

(iv) A point x in is  

(v) =open upper half-space 

(vi) A point in will be denoted as , where t is time variable. 

(vii) U,V,W denote open subsets of .We write if and is compact 

i.e. V is compactly contained in U. 

(viii) = boundary of U 

U=closure of  

(ix)   

(x) =parabolic boundary of TU    

(xi) = open ball in with centre x and radius r>0 

(xii) =closed ball in with centre x and radius r>0 

(xiii) =volume of unit ball in  

 

=surface area of unit sphere in  

(xiv) If s.t.  and then and  

(b) Notations for functions 

(i) If ,we write where , u is smooth if u is infinitely 

differentiable. 

(ii) If u, v are two functions, we write if u, v agree for all arguments 

means u is equal to v. 

nR n 

1R R 

thi  0,0,0,...1,...0

nR  1 2, ,..., nx x x x

  1 2, ,..., 0n n

n nR x x x x R x   

1nR     1, ,..., ,nx t x x t

nR V U V V U  V

U

U U U 

 0,TU U T 

T T TU U  

   0 , nB x r y R x y r   
nR

   , nB x r y R x y r   
nR

 n  0,1B nR

2

1
2

n

r

n


 
  
 

 n n  0,1B nR

, na b R  1 2, ,..., na a a a  1 2, ,..., nb b b b
1

,
n

i i

i

a b a b




1
2

2

1

n

i

i

a a


 
  
 


:u U R    1 2, ,..., nu x u x x x x U

u v

:u v
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(iii)  The support of a function u is defined as the set of points where the function is not zero and 

denoted by spt u. 

 
(iv)  The sign function is defined by 

 

          

             

(v) If  

 where  

The function  is the ith component of u 

(vi) The symbol denotes the integral of  f over dimensional surface in  

(vii) The symbol denotes the integral of  f over the curve C in   

(viii) The symbol   denotes the volume integral of S over and is an arbitrary point. 

(ix) Averages:   

=average of f over ball  

 

=average of f over surface of ball  

(x) A function is called Lipschitz continuous if 

, for some constant C and all .We denote 

 

(xi) The convolution of functions is denoted by . 

  0u x X f x  

1 0

sgn 0 0

1 0

if x

x if x

if x




 
 

 

 

max ,0

min ,0

u u

u u

u u u





 



 

 

u u u  

: mu U R

       1 ,..., mu x u x u x x U   1 2, ,... mu u u u

iu

fdS


  1n  nR

C

fdl
nR

V

fdx
nV R x V

     , ,

1
n

B x r B x r

fdy fdy
n r

 

 ,B x r

     
1

, ,

1
n

B n r B n r

fds fds
n n r 

 

 

 ,B x r

:u U R

   u x u y C x y   ,x y U

 
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
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(c) Notations for derivatives:   Suppose  

(i)  

   provided that the limit exists. We denote by  

Similarly and    and in this way higher order derivatives can be 

defined. 

(ii) Multi-index Notation 

(a) A vector of the for where each is a non-negative integer is called 

a multi- index of order  

(b) For given multi-index ,define 

    

(c) If i is a non-negative integer 

   

The set of all partial derivatives of order i. 

(d)  

(iii)  

             =Laplacian of u 

             =trace of Hessian Matrix. 

(iv) Let  

      Then we write 

           

         

       The subscript x or y denotes the variable w.r.t. differentiation is being taken  

(d) Function Spaces 

(i) (a)  

(b)  

(c)  

: ,u U R x U 

     
0

i

h
i

u x u x he u x
lt

x h

  




u

x




ixu

2

i jx x

i j

u
u

x x



 

3

i j kx x x

i j k

u
u

x x x



  

  1 2, ,..., n    i

1 2 ... n      



 
 

1...
1

u x
D u x

nx x
n









 

    ,iD u x D u x i  

 

1
2

2
k

k

D u x D u

 

  
  
  


1
i i

n

x x

i

u u


 

   1 2 1 2, . . , ,..., , , ,...,n

n nx y R i e x x x x y y y y  

 
1
,...,

nx x xD u u u

 
1
,...,

ny y yD u u u

   : u is continousC U u U R 

    C U u C u u is uniformly continous on bounded subsets of U 

   :kC U u U R u is k times continuous differentiable 
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(d)  is uniformly continuous unbounded subsets of U for all  

   

(e)  

(ii) means has compact support. 

Similarly, means has compact support. 

(iii) The function is Lebsegue measurable over if  

  

The function is Lebsegue measurable over if  

 

(iv)  

 

(v)  

Similarly,  

(vi) If is a vector, where then   

similarly other operator follow. 

(e) Notation for estimates:  

(i) Big Oh(O)order 

We say 

as provided there exists a constant C such that , for all x 

sufficiently close to . 

(ii) Little Oh(o) order 

We say 

as ,provided  

 ( ) { : |k kC U u C U D u

}k 

   : infC U u U R u is initly differentiable  

 cC U  C U

 k

cC U  kC U

:u U R pL
 pL U

u  

 

1

,1p

p
p

L U

U

u u dx p
 

    
 


:u U R L

 L U
u   

 
sup

L U
U

u ess u 

   :p pL U u U R u is Lebsegue measurableover L 

   :L U u U R u is Lebsegue measurableover L  

   
p pL U L U

Du Du

   

2 2

p pL U L U
D u D u

: mu U R  1 2, ,..., mu u u u  ,kD u D u k  

 f O g 0x x    f x C g x

0x

 f o g 0x x
 

 0

0
x x

f x
lt

g x

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2 Inequalities 

(i) Convex Function  

A function  is said to convex function if  

     

 

(ii) Cauchy’s Inequality 

          

(iii) Holder’s Inequality 

Let ; ,      

         

(iv)  Minkowski’s Inequality 

Let , and ,    Then  

(v) Cauchy Schwartz Inequality 

          

3 Calculus 

(a) Boundaries 

Let be open and bounded, k={1,2,…,} 

Definitions: 

(i) The boundary  is  if for each point  there exists r>0 and a  function

such that  

Also, is analytic if is analytic. 

(ii) If is , then along , the outward unit normal at any point is denoted by

. 

(iii) Let then normal derivative of u is denoted by  

(b) Gauss-Green Theorem 

Let be a bounded open subset of and is . and also then 

                                                 

: nf R R

( (1 ) ) ( ) (1 ) ( )f x y f x f y       

for all , and each 0 1.nx y R   

2 2

2 2

a b
ab    ,a b R

1 ,p q 
1 1

1
p q
     ,p qu L u v L u 

   
p quv dx u v

L U L U
U



1 p    , pu v L U      
p p qu v u v

L U L U L U
  

.x y x y  , nx y R

nU R

U kC 0x U kC

1: nR R        0 0

1 1, , ,...,n nU B x r x B x r x x x     

U 

U 1C U 0x U

   0

1,..., nv x v v

 1u C U .
u

v Du
v






U nR U 1C : nu U R  1u C U

i

i

x

U U

u dx uv dS


   1,2,...,i n
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(c) Integration by parts formula 

Let then 

                           

Proof: By Gauss-Green’s Theorem 

              

Or           

Or           

(d) Green’s formula 

Let then 

(i)  

Proof:  

Integrating by parts, taking the second function as unity 

               

                              

Hence proved. 

(ii)  

Proof:  

                                                   (integrating by parts) 

(iii)  

Proof:  

Similarly,  

subtracting, we get the result.  

 1,u v C U

i i

i

x x

U U U

u vdx uv dx uv dS


    

   
i

i

x

U U

uv dx uv dS


 

 
i i

i

x x

U U U

u vdx uv dx uv dS


   

 
i i

i

x x

U U U

u vdx uv dx uv dS


    

 2,u v C U

U U

u
udx dS





 

 

 
i

i
x

x
U

udx u dx  

i

i

x

U U

udx u dS


  

U

u
dS









.
U U U

v
Du Dvdx u vdx udS





   

  

. .
U U U

Du Dvdx u vdx uDv dS


     

U u

v
u vdx u dS





   

 

 
U U

v u
u v v u dx u v dS

 


  
     

  
 

.
U U U

v
u vdx Du Dvdx udS





   

  

.
U U U

u
v udx Du Dvdx udS





   

  
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(e) Conversion of n-dimensional integrals into integral over sphere 

(i) Coarea formula 

Let be Lipschitz continuous and assume that for a.e. ,the level  set

is a smooth and n-1 dimensional  surface in .Suppose also is smooth and summable. 

Then 

 

Cor. Taking  

Let be continuous and summable then 

 

for each point or we can say 

 

for each r>0. 

(f) To construct smooth approximations to given functions 

Def: If is open, given .We define  

Def. Standard Mollifier 

Let such that 

 

The constant c is chosen so that  

Def. We define 

  for every . 

Properties: 

(i) The functions are since are . 

(ii)  

                                   (by definition of n-tuple integral)   

                     =1 

: nu R R r R   nx R u x r 

nR : nf R R

 n u rR

f Du dx fdS dr



 

 
 
 
 

  

  0u x x x 

: nf R R

 00 ,n B x rR

fdx fdS dr





 
 
 
 

  

0

nx R

   0 0, ,B x r B x r

d
fdx fdS

dr


 
  
 
 
 

nU R 0    : ,U x U dist x U    

 nC R 

  2

1
exp 1

: 1

0 1

c if x
x x

if x



  
        




1
nR

dx 

 
1

:
n

x
x 

 

 
  

 
0 

 C  x C

1

n n

n

R R

x
dx dx 

 

 
  

 
 

 
nR

x dx 
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(g) Mollification of a function 

If is locally integrable 

We define the mollification of f 

in  

                           (by definition) 

Properties: 

(i)  

(ii) almost everywhere as  

(iii) If then uniformly on compact subset of almost everywhere. 

Function Analysis Concepts 

(i) space: Assume to be a open subset of and .If is measurable, we 

define 

 

 Transformation from Ball to unit Ball  

Let be a ball with centre x and radius r and be an arbitrary point of and z be an 

arbitrary point of then relation between y and z is y=x+rz. 

:f U R

:f f

  U 

   
U

x y f y dy     
 0,B

y f x y dy



 

 f C U





f f  0 

 f C U f f  U

pL U nR 1 p   :f U R

 

1

1
:

sup

p

p
p

UL U

U

f dx if p
f

ess f if p

  
     

   
  
  



 ,B x r  0,1B

 ,B x r  0,1B  ,B x r

 0,1B




